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Abstract

Outcome tests are a method comparing rates of observed outcomes across selected

groups to evaluate bias in decision making processes. Building on the lower bound

estimand from Knox et al. (2020), I derive a lower bound in terms of relative risks

and develop a sensitivity analysis to weaken the selection-on-observables assumption.

Additionally I develop a covariate adjusted sensitivity analysis to assess sensitivity to

unmeasured covariates. I am able to estimate a bias adjusted outcome test robust to

both measured and unmeasured confounders. Applying this outcome test and sensitiv-

ity analysis to data from the Chicago Police Department (1985-2016), I find evidence

for gender bias in hiring. I estimate at least 7.4% of men would not have been hired

had they been women.

∗PhD Candidate, Emory University
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1 Introduction: Evaluating Bias in Decision Making

Processes

From police stops to elections, there are many different decision making processes that we

want to know are free from bias and discrimination. A common approach, known as bench-

marking, assesses bias by looking at the selection rates across groups. Alternatively, out-

come tests, suggested by Becker (1993), are an approach to directly evaluate discrimination

in these decision making processes. Outcome tests compare occurrence rates of outcomes

across groups to evaluate bias in the selection process. Traditionally, outcome tests are useful

as suggestive evidence of bias but provide no measure of magnitude or quantity. As with

benchmarking, outcome tests are used in many settings we care about – mortgage lending

(Simoiu et al., 2017), pedestrian stops by police (Gelman et al., 2007) and legislator effec-

tiveness (Anzia and Berry, 2011; Cohen and Glynn, 2021). Using the example of mortgage

lending, benchmarking looks at whether Black applicants are denied loans at higher rates

than white applicants. Outcome tests evaluate outcomes after the loans have been granted

and compare default rates across Black and white loan recipients. If Black applicants are

more frequently denied loans but on average default at lower rates, an outcome test would

suggest this is evidence of bias in the decision making process to give mortgage loans (Simoiu

et al., 2017).

The main limitation in traditional outcome tests is that they can suggest a process

is discriminatory but do not quantify to what extent. To solve this problem Knox et al.

(2020) use a principal stratification framework to derive a lower bound for the outcome

test and apply it to racial bias in policing. The prominent drawback to the approach by

Knox et al. (2020) is that it requires that within principal strata, groups are comparable

after controlling for measured covariates. However, in many situations we may not be able

to successfully measure all necessary variables to support this assumption. In this paper I

weaken this assumption and develop a sensitivity analysis, building on the E-value approach
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from VanderWeele and Ding (2017), to evaluate the sensitivity of the lower bound estimand

to unobserved confounders. Additionally, I advance an approach to adjust the lower bound

estimate based on unmeasured confounders as large as important measured covariates. In

Section 2 I discuss the assumptions required and derive the parameter of interest, in Section

3 I discuss estimation, Section 4 describes the sensitivity analysis and Section 5 empirically

evaluates gender bias in hiring in the Chicago Police Department.

2 Outcome Test using Potential Outcomes

We will consider two groups in this selection process – a discriminated against group and

non-discriminated against group. Let ρi ∈ {0, 1} indicate person i’s group status. ρi = 0

signifies person i is the non-discriminated against group and ρi = 1 signifies person i is in

the discriminated against group. The selection process for person i is defined as Si ∈ {0, 1}.

The outcome is Yi ∈ {0, 1}1. Using potential outcome notation we can define the potential

selection of person i as Si(0) if person i is from group ρ = 0 and Si(1) if person i is from

group ρ = 1. Using a principal stratification framework we can define the rate of the outcome

under each selection strata. The population rate of the outcome by group ρ, is defined as

follows:

Definition 1 (Population average among those selected from group ρ).

E[Yi|Si(ρ) = 1, ρi]

Definition 1A (Sample average among those selected from group ρ).

Y ρ ≡
∑Nρ

i=1 Yi(ρ)∑Nρ

i=1 ρi

where Nρ are the number of observations in group ρ. This average can separately be defined
1This extends to the case of a continuous outcome Yi ∈ [0,∞) see Cohen and Glynn (2021)
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for each of the four strata defined by the selection process we are concerned with (see Table

1).

Definition 2 (Population Average Among Helped). Population average outcome among

those with ρ = 0 that would not have been selected if ρ = 1.

E[Yi|Si(0) = 1, Si(1) = 0, ρi = 0]

Definition 2A (Sample Average Among Helped).

Y Si(0)=1,Si(1)=0,ρi=0 ≡
∑Nρ=0

i=1 Yi(0)(Si(0) = 1, Si(1) = 0, ρi = 0)∑Nρ=0

i=1 ρi = 0

Definition 3 (Population Average Among Always for Non-discriminated Group). Popula-

tion average outcome among those with ρ = 0 that would have also been selected if ρ = 1.

E[Yi|Si(0) = 1, Si(1) = 1, ρi = 0] ≡
∑Nρ=0

i=1 Yi(0)(Si(0) = 1, Si(1) = 1, ρi = 0)∑Nρ=0

i=1 ρi = 0

Definition 3A (Sample Average Among Always for Non-discriminated Group).

Y Si(0)=1,Si(1)=1,ρi=0 ≡
∑Nρ=0

i=1 Yi(0)(Si(0) = 1, Si(1) = 1, ρi = 0)∑Nρ=0

i=1 ρi = 0

Definition 4 (Population Average Among Always for Discriminated Group). Population

average outcome among those with ρ = 1 that would have also been selected if ρ = 0.

E[Yi|Si(0) = 1, Si(1) = 1, ρi = 1]

Definition 4A (Sample Average Among Always for Discriminated Group).

Y Si(0)=1,Si(1)=1,ρi=1 ≡
∑Nρ=1

i=1 Yi(1)(Si(0) = 1, Si(1) = 1, ρi = 1)∑Nρ=1

i=1 ρi = 1
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The top left quadrant in Table 1, Si(1) = 0 and Si(0) = 0, occurs when a member of

either group will not make it through the selection process. Usually we do not observe this

group. The top right quadrant where Si(1) = 1 and Si(0) = 0 occurs when a person from

the discriminated group ρi = 1 would be selected but would not be selected if from the

non-discriminated against group ρi = 0. Given we are thinking about this process from the

viewpoint of group ρ = 0, I will label this quadrant as the “hurt” group.

Table 1: Principal Strata for S and ρ

ρi = 1

Si(1) = 0 Si(1) = 1

ρi = 0
Si(0) = 0 Never Hurt

Si(0) = 0, Si(1) = 0 Si(0) < Si(1)

Si(0) = 1 Helped Always

Si(0) > Si(1) Si(0) = Si(1) = 1

Note: The parameter of interest is trying to estimate the proportion
of group ρi = 0 that falls in the grey quadrant, Si(0) > Si(1).

2.0.1 Assumptions

Assumption 1 (Monotonicity). The probability that a selected person with ρ = 1, would

not have been selected had they had ρ = 0.

Pr[S(1) = 1, S(0) = 0)] = 0

The Monotonicity assumption 1, assumes the “hurt” group does not exist. We may be

concerned that this assumption is difficult to support in practice if there are affirmative
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action type mandates in place aimed at hiring people from a historically marginalized group.

For example, in hiring in police departments, if the physical assessment required to be hired

is different for women than it is for men it is possible the “hurt” category does exist. However,

as long as this group characteristic is associated only with the selection mechanism and is not

associated with the outcome there is no violation of monotonicity. The bottom left quadrant

describes the situation when Si(1) = 0 and Si(0) = 1. This occurs when a person from

the non-discriminated group is selected but they would not have been selected if they were

from the discriminated group. We will refer to this as the “helped” group as they are helped

by the fact that there is bias in the decision making process. The bottom right quadrant

occurs when Si(1) = 1 and Si(0) = 1. This is the “always” selected group because person i

is selected no matter which group they belong to.

Assumption 2 (Comparability). Group ρ = 0 are comparable to the “always” select from

group ρ = 1

E[Yi|Si(0) = Si(1) = 1, ρi = 1] = E[Yi|Si(0) = Si(1) = 1, ρi = 0]

Comparability assumption 2 requires that the average rate of the outcome for the “always”

members of for group ρ = 1 equal the average of the “always” members of group ρ = 0. Given

that this comparability assumption is unlikely to hold except in cases of random sampling

we will focus on the following assumption that incorporates covariates:

Assumption 2′ (Comparability within levels of X).

E[Yi|Si(0) = Si(1) = 1, ρi = 1, Xi = x] = E[Yi|Si(0) = Si(1) = 1, ρi = 0, Xi = x] ∀x ∈ X
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Corollary 2.1.

∑
x

E[Yi|Si(0) = Si(1) = 1, ρi = 1, Xi = x]Pr[Xi = x] =

∑
x

E[Yi|Si(0) = Si(1) = 1, ρi = 0, Xi = x]Pr[Xi = x]

Assumption 2′ states that within specified levels of X, the average outcome of the “always”

observations in group ρ = 0 must equal the average outcome of the “always” observations

in group ρ = 1. This assumption directly provides Corollary 2.1 that the weighted averages

across levels of X for the “always” observations are equal. This comparability assumption

combined with the monotonicity assumption that all members of group ρ = 1 are in the

“always” group are necessary to estimate the lower bound of the outcome test.

2.1 Parameter of Interest

The key parameter of interest is the proportion of the non-discriminated group, ρ = 0, who

would not have been selected if they were from the discriminated group ρ = 1. The non-

selected group by definition is not observed and I will assume the “hurt” group does not

exist2. I can rewrite E[Yi|ρi = 0] in terms of the bottom strata of Table 1.

E[Yi|ρi = 0] = π · E[Yi|Si(0) > Si(1), ρi = 0] + (1− π) · E[Yi|Si(0) = Si(1) = 1, ρi = 0] (1)

To derive the lower bound I rearrange Equation 1 and solve for π (see Appendix A for

details).

π =
E[Yi|Si(0) = Si(1) = 1, ρi = 0]− E[Yi|ρi = 0]

E[Yi|Si(0) = Si(1) = 1, ρi = 0]− E[Yi|Si(0) > Si(1), ρi = 0]
(2)

2A violation of this would occur if selected members of the discriminated group would not have been
selected had they been from the non-discriminated group.
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We will estimate this using sample averages so we can re-write this as:

π =
Y ρi=0,Si(0)=Si(1)=1 − Y ρi=0

Y ρi=0,Si(0)=Si(1)=1 − Y ρi=0,Si(0)>Si(1)

(3)

The smallest value possible for Y ρi=0,Si(0)>Si(1) is zero, so I will substitute into Equation 3 to

get a lower bound for π:

π ≥
Y ρ=0,s(0)=s(1) − Y ρ=0

Y ρi=0,Si(0)=Si(1)

(4)

By assuming comparability holds, the “always” strata of group ρ = 0 can be estimated using

the “always” strata of group ρ = 1. Assuming monotonicity means I can estimate this using

the observed average rate of outcome for the the discriminated group ρ = 1.

π ≥ Y ρi=1 − Y ρi=0

Y ρi=1

(5)

Equation 5 is used to estimate the lower bound on the proportion of group ρ = 0 who would

not have been selected had they been from group ρ = 1.

Given the properties of a binary outcome, we can instead write Equation 5 in terms of

probabilities:

π ≥ Y ρi=1 − Y ρi=0

Y ρi=1

=
Pr[Yi = 1|ρi = 1]− Pr[Yi = 1|ρi = 0]

Pr[Yi = 1|ρi = 1]

= 1− Pr[Yi = 1|ρi = 0]

Pr[Yi = 1|ρi = 1]

= 1− 1
E[Pr[Yi=1|ρi=1]]
E[Pr[Yi=1|ρi=0]]

(6)

= 1− 1

RRρY

(7)
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Where RRρY is the relative risk of group ρ on the outcome Y .

3 Lower Bound Estimation

It is straightforward to estimate π using the relative risk as shown in Equation 7 comparing

the probability of the outcome for groups ρ = 0 and ρ = 1 if no standardization is necessary.

A major concern with this estimation procedure is that it requires the strong assumption

2, comparability. The contribution of this paper is to estimate π after weakening this as-

sumption. First, to better support the assumption of comparability the probabilities and

relative risks can be estimated conditioning on measured covariates X. In practical terms

the relative risks will use a regression-based approach to estimate these probabilities:

Pr[Yi = 1|ρi] = h(ρi,Xi, β) (8)

Where h(·)−1 is a specified link function, ρi is group membership, Xi is a vector of explanatory

variables and β is a K × 1 vector of parameters. Conditioning on X helps support the

assumption that the “always” strata of group ρ = 1 is comparable to the “always” strata of

group ρ = 0. The relative risk RRρY |X is then the relative risk of group ρ = 1 compared to

group ρ = 0 on the outcome Y marginalized over X:

RRρY |X =
E[Pr[Yi = 1|ρi = 1,X = x]]

E[Pr[Yi = 1|ρi = 0,X = x]]
(9)

In the main empirical analysis in this paper I will use a Poisson model with a log-link

(Greenland, 2004). The Poisson model allows us to directly estimate the relative risk and is

constant across all values of X = x. The parameter on the ρ variable, βρ, is the log of the

relative risk of the outcome when ρ = 1 compared to ρ = 0. Whenever a log-link is used the

relative risk is directly estimated. With a logistic-link the probabilities are first separately

estimated and then the ratio forms the relative risk (see Appendix B for estimation using
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a logistic regression approach). Using the relative risk, the lower bound on the proportion

of group ρ = 0 who would not have been selected had they been group ρ = 1, marginalized

across X, is estimated as:

π̂ρ,X ≥ 1− 1

R̂RρY |X
(10)

4 Sensitivity Analysis

A major concern we may have when estimating bias in a decision making process is that there

are omitted variables associated with both group membership and the outcome. As seen in

Figure 1, the unobserved confounder U could be associated with both group membership

ρ and the outcome Y . I assume X and U are independent by conceptualizing U (or the

linear combination of many Us) as the part of the outcome orthogonal to X. An omitted

variable having this relationship with group membership and the outcome would violate the

assumption of comparability and mean that the true model that I would like to estimate is

as follows in Equation 11:

Pr[Yi = 1|ρi] = h(ρi,Xi, Ui, β) (11)

X
Measured
covariates

ρ
Treatment

Y
Outcome

Unmeasured
Confounder

U
RRρU RRUY

Figure 1: DAG with unmeasured confounder

The original specification from Equation 8 was then actually estimating a restricted model
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where the true model and observed (restricted) model are related in the following way:

RRρY |X,U ≥
RRρY |X

BFU,X
(12)

where BFU,X is the bias factor

BFU,X =
RRUY |ρ,XRRρU |X

RRUY |ρ,X +RRρU |X − 1
(13)

4.0.1 Binary confounder

The bias factor is the amount of estimation bias due to omitting a confounder and is deter-

mined by both the association of the confounder with the outcome and the treatment with

the confounder (Ding and VanderWeele, 2016). RRUY |ρ,X is the associated relative risk of

the unobserved confounder U with the outcome Y for ρ = ρ and X = x. This is a mea-

sure of how important the association of the confounder is with the outcome. For a binary

confounder, continuing to marginalize across X, we have

RRUY |X =
E [Pr[Y = 1|U = 1, ρ,X = x]]

E [Pr[Y = 1|U = 0, ρ,X = x]]

For the relative risk for group membership on the unobserved confounder we have RRρU |X

as

RRρU |X =
E [Pr[U = 1|ρ = 1,X = x]]

E [Pr[U = 1|ρ = 0,X = x]]

4.0.2 Non-binary confounder

The confounder need not be binary and if this is the case RRρU |X denotes the maximum

relative risk U = k for all k = 0, 1, . . . K−1 and U = l for all l = 0, 1, . . . , L−1 marginalized

across X. In each of the following we choose the levels of k and l to maximize the ratio such

that
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RRUY |ρ,X =
E [maxkPr[Y = 1|U = k, ρ,X = x]]

E [minlPr[Y = 1|U = l, ρ,X = x]]

Similarly, RRρU |X is the maximum relative risk for group membership on the unobserved

confounder where k is the level at which the relative risk of treatment on the outcome is the

largest and marginalized across X.

RR
maxρU |X

=
E [Pr[U = k|ρ = 1,X = x]]

E [Pr[U = k|ρ = 0,X = x]]

Given knowledge about the magnitude of these confounder relative risks it would be straight-

forward to calculate the confounder bias BFU,X (Equation 13), the relative risk RRρY |X,U(Equation 12)

and finally πρ,X,U

πρ,X,U = 1− 1
RRρY |X
BFU,X

(14)

πρ,X,U = 1− 1

RRρY |X,U

(15)

where πρ,X,U is the proportion of members in group ρ = 0 who would not have been selected

had they been in group ρ = 1 marginalized across observed X and unobserved U . In

rare cases with domain expertise, there may be a reason why we are unable to observe U

directly to include in our main estimation but we are sufficiently knowledgable about the

magnitudes of the associated relative risks. For any pair of values for the associated relative

risks we could carryout the above process for estimating our quantity of interest. Without

substantiated knowledge about the magnitudes of the unobserved confounder we need a

systematic approach for contextualizing the robustness of our findings.
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4.1 Explaining away the entire effect

Given the difficulty in knowing appropriate values for these parameters it is common to

instead focus on what size of relative risks would give us a null effect. We see this going

back to Cornfield et al. (1959) and their evaluation that a confounder would have to be 9

times the risk of lung-cancer for a non-smoker to believe the confounder, and not smoking,

leads to lung cancer. More recently, this has been formalized by the E-value as the mini-

mum association of an unmeasured confounder that is necessary to fully explain away the

treatment-outcome effect (VanderWeele and Ding, 2017). Thinking about the magnitude of

an unmeasured confounder in this way helps us to evaluate the feasibility and likelihood of

possible confounders that could substantively alter our findings. The two thresholds that

must be met to fully explain away the effect are discussed below.

4.1.1 Low and high thresholds for bounding the confounder

The general Cornfield conditions state that in order to completely wipe out the effect of

treatment with the outcome the threshold that must be met is min(RRρU |X, RRUY |ρ,X) >

RRρY |X (Cornfield et al., 1959). For this to hold, both the confounder relatives risks must be

at least as large as the main overall relative risk of treatment on outcome. This is shown as

the red dashed lines in Figure 5. If the main treatment-outcome effect is RRρY |X then both

confounder relative risks must be at least this large for the confounder to completely wipe

out the effect. Additionally, there is a high threshold condition that must also be satisfied in

order to explain away the effect – the contour line. This contour comes from the combination

of confounder relative risks such that the bias factor would equal that of observed RRρY |X.

The point labelled “E-value” is the E-value calculation from VanderWeele and Ding (2017)

where the two confounder relative risks are set equal to each other. To completely wipe out

the main effect the pair of relative risks must be on or above this contour line.

Therefore, the first step in the sensitivity analysis, is to estimate these thresholds and

consider the likelihood of an unmeasured confounder meeting them. Thresholds that are
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Comparison

Covariate

(RRρU|X,RRUY|ρX)

0

1

2

3

4

0 1 2 3 4
RRρU|X

R
R

U
Y

|ρ
X

Confounder relative risks

Figure 2: Low and high thresholds for completely exlaining away the main effect. The red
dashed lines represent the low threshold requirement. The confounder relative risks must be
on or above the contour line to completely wipe out the main effect.

large give suggestive evidence that the main relative risk of interest is robust to unobserved

confounders. Understanding how robust our main relative risk is to confounding is im-

portant, but is a quite conservative approach viewing these estimates in an all or nothing

manner. A more practical approach may be to consider how a reasonable amount of con-

founder bias could change – but not wipe out completely – our results. In this paper I

propose two additional steps. First, is to use an observed covariate as a comparison metric

to better evaluate the feasibility of meeting these thresholds and fully wiping out the ob-

served treatment-outcome effect. Second, if it is unlikely that the both thresholds are met, I

make a confounder bias adjustment to the main relative risk and calculate an adjusted lower

bound on the outcome test.
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4.2 Comparison covariate

Given that I do not observe U and therefore cannot directly estimate the bias from leaving U

out of the model, I will conduct a sensitivity analysis using a comparison covariate in order

to weaken the selection-on-observables assumption. I will choose a comparison covariate, Xj,

that is both theoretically and substantially associated with group membership and with the

outcome. To perform the sensitivity analysis I will use RRXjY |ρ,X−j
in place of RRUY |ρ,X and

RRρXj |X−j
in place of RRρU |X. I first evaluate whether a confounder the same strength as the

comparison covariate could potentially wipe out the entire effect of group membership on the

outcome. That is, does the comparison covariate meet the low and high thresholds discussed

in subsubsection 4.1.1. If that threshold is not met I can then estimate the bias factor

BFXj ,X−j
, the adjusted overall relative risk (Equation 17) and outcome test lower bound

for including a confounder of similar strength as the comparison. Using the comparison

covariate the bias factor will be

BFXj ,X−j
=

RRXjY |ρ,X−j
RRρXj |X−j

RRXjY |ρ,X−j
+RRρXj |X−j

− 1
(16)

the adjusted overall relative risk is then

R̂R
adj.

ρY |X =
R̂R

obs

ρY |X

BFXj ,X−j

(17)

and the adjusted outcome test lower bound is

π̂adj
ρ,X ≥ 1− 1

R̂R
adj

ρY |X

(18)

It is important to note that all relative risks discussed have been conditional on observed

covariates X. Therefore any results such as the adjusted relative risk R̂R
adj

ρY |X or the adjusted

parameter π̂adj
ρ,X hold within a given stratum of X. In more practical terms, π̂adj

ρ,X will be

averaged across all strata X. Next, I will apply this new methodological approach to evaluate

15



gender bias in hiring of women in policing.

5 Empirical Application: Women in Policing

In 2001, the National Center for Women & Policing conducted their fifth annual status

report on women in law enforcement in the United States. They report a discouragingly

small proportion of all sworn law enforcement positions held by women – 12.7% for agencies

with 100 or more sworn officers (8.1% for small and rural agencies). In these large agencies,

women also hold few advanced positions – 7.3% in top command positions and 9.6% in

supervisory roles. The report also highlights that not only has the proportion of women

increased only 4 percentage points from 1990 to 2001 but that this change has stalled or

even decreased since the late 1990s (Lonsway et al., 2002).

More recent reports offer a similar story. From the NIBRS 2017 report of 12.5% pro-

portion of female police officers, we see this stagnating trend has not improved. Notably,

the 2001 report is now 20 years old because this organization, dedicated to supporting and

studying women in policing, has stopped being funded. This highlights the lack of attention

given to the gender inequity in policing in the United States. The status of women in policing

has not demonstrably changed in the last two decades and while there is a growing focus in

political science on race and ethnicity in policing, little attention has been given to gender.

The police are a political and social institution that have direct and often frequent contact

in people’s lives. Street-level bureaucrats like the police, social workers, etc. are the agents

of the government that people most frequently come into contact with and have a high level

of discretion over the allocation of public goods, such as welfare benefits or public housing as

well as the ability to confer status such as “criminal”. “Moreover, when taken together the

individual decisions of these workers become, or add up to, agency policy” (Lipsky, 2010).

The lack of descriptive representation in the police can directly affect outcomes through

the individual behaviors of officers as even with a strong police culture, individual group
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identities may matter (LeCount, 2017). Additionally, in government, increased collective

descriptive representation is associated with higher perceived responsiveness and legitimacy

by its citizens (Atkeson and Carrillo, 2007) and so too can the perception of responsiveness

and legitimacy of the police be threatened when the officers seem far removed on gender,

race and ethnicity form the people they serve (Lipsky, 2010). This could be especially

important in disadvantaged neighborhoods that are subject to aggressive policing but have

slow responses to citizen complaints and citizen initiated interactions. Lerman and Weaver

(2014, page 205) write “[B]ecause citizens derive evaluations of authorities from their personal

and vicarious contact, both the concentration and character of policing can have a powerful

influence on resulting attitudes about law enforcement.” The lack of women in policing due

to gender bias has implications for the efficacy, repsonsiveness and legitimacy of the police.

5.1 Women in policing bias

The raw numbers of women in policing are very low compared to the population. However,

this alone is not evidence of gender bias. If women have different preferences and choose

to apply to become police officers at much lower rates, than even a completely unbiased

recruiting and hiring process could result in disproportionate group sizes. An outcome test

can be used to reveal bias in policing if on average women officers have higher performance

than men officers. There may be gender bias in the selection process from two mechanisms.

First, women may perceive there to be gender bias in recruiting and hiring. If this is the case

only the most qualified and capable women will even apply resulting in higher performance

on average. Second, there may be gender bias by police in the recruiting and hiring of

women. Therefore only the most qualified women applicants will be hired leading to, on

average, higher performance by women than men.
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5.2 Chicago Police Department Data

The Invisible Institute, mainly through FOIAs, have collected data from the Chicago Police

Department (CPD) through what they call the “Citizens Police Data Project” (Invisible

Institute, 2019). Their goal is to collect and release different forms of interactions between

civilians and police officers such as citizen complaints and use of force reports as well as

salary and roster information about the officers. The data has been released via a GitHub

repository (see CPD (2019)) to support transparency. Using the matching done by Invisible

Institute (2019), I am able to link police officer roster data with data on monetary settlements

paid by the CPD to settle police misconduct lawsuits.

The roster data goes back until 1946 but the reliability is questionable. Women were

only first assigned to patrol duties in Chicago in 1974 ((Chicago Police Department, 2019)).

Given that the outcome I am focusing on is settlements, which include incidents involving

excessive force and unlawful arrest, it does not make sense to use data prior from when

women could have been involved in these types of incidents. Additionally, I have Law

Enforcement Management and Administrative Statistics (LEMAS) data from 1985 which

gives aggregate counts of sworn male and female police officers totaling 12,478 people (10.64%

are women)(Bureau of Justice Statistics., 1985). From the aggregate numbers provided by

the LEMAS data I am able to verify the stock total of officers in the CPD data in 1985 (note

that many officers were appointed before 1985).

Therefore, I will use CPD data from 1985 until 2016 to conduct the empirical analyses.

Every officer is assigned a 0 or 1 value for the settlement outcome where no settlement is a

1. From 1985 to 2016, 4.3% of women and 7.9% of men have had a settlement. In the next

section I will use this data and apply the outcome test methodology to estimate gender bias

in hiring.
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5.3 Outcome Test Results on Chicago Police Department Data

Using the CPD data, group membership is ρ = 0 for men and ρ = 1 for women. In this

application men are the non-discriminated group and women are the discriminated against

group. The goal of the lower bound estimation π̂ρ, is to estimate the proportion of men who

would not have been hired had they been women. No settlement is the outcome Y measuring

one aspect of job performance. Given the observed rate of no settlement for women is 95.6%

and 92.0% for men, the estimated lower bound of the proportion of men who would not have

been hired had they been women is 3.8%. With no adjustment of covariates, 3.8% of men

(917 men) would not have been hired had they been women.

In order to better support Assumption 2, comparability of groups in the “always” strata,

I use Poisson regression specifications to estimate relative risks for the parameter π̂ρ,X con-

ditioned on covariates. More comparable samples help uphold the assumption that the

“always” hired are the same on average for both men and women. For the regression spec-

ification, the “no settlement” outcome is regressed on the main variable of interest, gender.

Additional covariates for race and appointed year are included in the main specification.

Table 2 shows the Poisson regression results using a log link. The exponentiated coefficients

give us the relative risks. Looking at conditioning set 2, women have a 9% increase in the

likelihood of no settlement as compared to men. A limitation of this data is that the roster of

complete information is from a single point in time, 2017. Therefore, appointed year (which

I have binned into categories of five years), captures both time trends related to policing and

the behaviors that may lead to lawsuits, as well as experience of the officer. Figure 3 shows

the total number of settlements by year of the incident. The number of incidents occur-

ring peaked in 2011. Additionally, we can see from Figure 4 that officers hired in the early

2000s were the cohort most heavily involved in incidents leading to settlements. Including

appointed year as a binned variable in the model specification helps parse out the different

associations of outcome with gender versus these trends in policing. Using conditioning sets

1 and 2, I estimate that at least 9.6% (8.3%) of men would not have been hired had they
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been women (Table 3).
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Figure 3: Total number of settlements by
year of incident
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Figure 4: Total number of settlements by
appointed year of officer involved

5.4 Sensitivity analysis adjustment

The sensitivity analysis is necessary to evaluate how strong an unobserved confounder U must

be to potentially reduce the estimated lower bound on the parameter of interest to zero. In

order to adjust my estimates to be robust to possible unmeasured confounders, I choose an

observed covariate with a strong association with the outcome to use as a comparison. I use

the cohort of officers appointed in 2000-2005, a time period with heavily enforced broken

windows policing compared to the cohort from 1985-1990. From Table 2 we can see that the

poisson coefficients on the 1985-1990 cohort as compared to the 2000-2005 are 0.20 and 0.19

on the log scale making the relative risks 1.11 and 1.09.

I separately estimate the RRXJY |X−j
for the association of this cohort with the outcome

and RRρXj |X−j
for the relative risk of gender with this cohort. Using the process discussed in

subsubsection B.0.2 I choose the maxima of the comparisons between the levels for appointed

year by group membership. When using a Poisson regression to estimate these relative risks

I do not have to separately estimate for group ρ = 1 and ρ = 0 since they are equivalent.

The largest ratio is between the 2000-2005 and 1985-1990 comparison as follows:
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No Settlement No Settlement
(1) (2)

Woman (ρ = 1) 0.10∗∗∗ 0.09∗∗∗

(0.01) (0.01)
Black 0.04∗∗∗ 0.04∗∗∗

(0.01) (0.01)
Hispanic 0.01 0.01

(0.01) (0.01)
Asian 0.01 −0.01

(0.02) (0.02)
Native American −0.02 −0.05

(0.07) (0.07)
Appointed Year (1985,1990] 0.20∗∗∗ 0.19∗∗∗

(0.01) (0.01)
Appointed Year (1990,1995] 0.18∗∗∗ 0.17∗∗∗

(0.01) (0.01)
Appointed Year (1995,2000] 0.13∗∗∗ 0.12∗∗∗

(0.01) (0.01)
Appointed Year (2005,2010] 0.02 0.02

(0.02) (0.02)
Appointed Year (2010,2015] 0.25∗∗∗ 0.24∗∗∗

(0.01) (0.01)
Intercept −0.31∗∗∗ −0.66∗

(0.01) (0.27)

Current Unit No Yes
Current Rank No Yes

AIC 31568.53 31795.99
BIC 31653.00 33093.64
Log Likelihood -15773.27 -15728.99
Deviance 3600.53 3511.99
Num. obs. 15969 15969
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 2: Poisson regression results used for estimating risk ratios. Robust standard errors
shown.
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Covariate Set 1 Covariate Set 2
Est. CI Est. Lower CI

Main R̂RρY |X 1.107 [1.095,∞] 1.091 1.079
estimates π̂ρ,X 9.6% [8.7%,100%] 8.3% [7.3%,100%]

BF 1.014 [1.005,∞] 1.01 [1.005,∞]
U adjusted R̂R

adj

ρY |X 1.091 [1.09,∞] 1.08 [1.078,∞]
estimates π̂adj

ρ,X 8.3% [8.2%,100%] 7.4% [7.2%,100%]

Table 3: Estimated RR and outcome test lower bound conditional on covariates using Poisson
regression. Bottom two rows are adjusted for unobserved confounding as large as an observed
comparison covariate by first estimating the bias factor and then the relative risk and lower
bound using Equation 17 and Equation 18. All confidence interval estimates use robust
standard errors (Zou, 2004).

RR
maxXjY |ρ,X−j

=
max1985−1990Pr[Y = 1|ρ,Xj = Appointment1985−1990,X−j]

min2000−2005Pr[Y = 1|ρ,Xj = Appointment2000−2005,X−j]

Similarly, the largest ratio for the model of confounder regressed on treatement is:

RR
maxρXj |X−j

=
Pr[Xj = Appointment1985−1990|ρ = 1,X−j]

Pr[Xj = Appointment1985−1990|ρ = 0,X−j]

For the first conditioning set used in model 1, RR
maxXjY |ρ,X−j

= 1.22 and RR
maxρXj |X−j

is estimated

to be 1.09. Given the estimated main effect of 1.11, the estimated confounder relative risks do

not satisfy the low threshold requirements and an unobserved confounder the same strength

as the comparison covariate would not be strong enough to wipe out the entire effect. Using

1.22 and 1.09 in the bias factor equation I can estimate an adjusted risk ratio and then

an adjusted quantity of interest. After controlling for the conditioning set in model 1 and

adjusting for an unobserved confounder the same strength as the comparison covariate, I find

that 8.3% of men would not have been hired had they been women. Repeating this process

on conditioning set 2 I estimate a RR
maxXjY |ρ,X−j

= 1.21 and RRρXj |X−j
= 1.06. Given the

main relative risk of 1.091 the confounder relative risks are not large enough to completely

wipe out the effect. With conditioning set 2 the adjusted risk ratio is 1.08 telling us that
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7.4% of men would not have been hired had they been women. 3

6 Discussion/Conclusion

My estimation of π, the proportion of men who would not have been hired had they been

women, is robust and substantively meaningful. Conditioning on covariates actually in-

creased the estimate of π from 3.8% to 9.6% (8.3%). Conditioning on covariates allows us

to parse out how race and appointed year (as well as current unit and rank) may be asso-

ciated with job performance separately from gender. This allows us to be more confident

that we are comparing men police officers with similar women police officers. The sensitivity

adjusted estimate π of 7.4% continues to be remarkably robust even after adjusting for a

confounder as strong as appointed year further strengthening our conclusions that there is

gender bias in hiring in the Chicago Police Department. This gives us confidence that we are

measuring a true, but likely conservative, estimate of gender bias in selection. Compared to

most U.S. cities Chicago is both large in population and high in yearly police department

settlements. Future analyses of cities across the United States would be informative. Most

likely the CPD is not an outlier in terms of gender bias in the hiring process and a national

analysis could shed light on city differences in hiring.

3The use of a comparison covariate to contextualize the potential bias from an unobserved confounder is
a “naive” benchmark as discussed in Cinelli and Hazlett (2020). This approach does not adjust for potential
collider bias and therefore could be underestimating the bias (VanderWeele et al., 2019). However, given
that using the covariate of cohort as a confounder comparison only minimally reduces the effect of group
membership on the outcome it is very unlikely that collider bias could significantly alter the results.
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Appendix

A Derivation of π from Equation 1

E[Yi|ρi = 0] =

π · E[Yi|Si(0) > Si(1), ρi = 0] + (1− π) · E[Yi|Si(0) = Si(1) = 1, ρi = 0]

E[Yi|ρi = 0] = π · E[Yi|Si(0) > Si(1), ρi = 0]

+ E[Yi|Si(0) = Si(1) = 1, ρi = 0]− π · E[Yi|Si(0) = Si(1) = 1, ρi = 0]

π · E[Yi|Si(0) = Si(1) = 1, ρi = 0]− π · E[Yi|Si(0) > Si(1), ρi = 0] =

E[Yi|Si(0) = Si(1) = 1, ρi = 0]− E[Yi|ρi = 0]

π(E[Yi|Si(0) = Si(1) = 1, ρi = 0]− E[Yi|Si(0) > Si(1), ρi = 0]) =

E[Yi|Si(0) = Si(1) = 1, ρi = 0]− E[Yi|ρi = 0]

π =
E[Yi|Si(0) = Si(1) = 1, ρi = 0]− E[Yi|ρi = 0]

E[Yi|Si(0) = Si(1) = 1, ρi = 0]− E[Yi|Si(0) > Si(1), ρi = 0]

Given Assumption 2, E[Yi|Si(0) = Si(1) = 1, ρi = 1] can be substituted in for E[Yi|Si(0) =
Si(1) = 1, ρi = 0]

π =
E[Yi|Si(0) = Si(1) = 1, ρi = 1]− E[Yi|ρi = 0]

E[Yi|Si(0) = Si(1) = 1, ρi = 1]− E[Yi|Si(0) > Si(1), ρi = 0]
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Given Assumption 1, we assume that all members of ρ = 1 are in the strata of E[Yi|Si(0) =
Si(1) = 1, ρi = 1] therefore this can be substituted with the observed rate of the outcome
for group ρ = 1 and E[Yi|ρi = 0] continues to be the observed rate for group ρ = 0.

π =
E[Yi|ρi = 1]− E[Yi|ρi = 0]

E[Yi|ρi = 1]− E[Yi|Si(0) > Si(1), ρi = 0]

Now the only unobserved quantity is E[Yi|Si(0) > Si(1), ρi = 0]. Given that the outcome
is defined as Yi ∈ {0, 1}, the smallest value this rate could take is 0, making this a lower
bound:

π =
E[Yi|ρi = 1]− E[Yi|ρi = 0]

E[Yi|ρi = 1]− E[Yi|Si(0) > Si(1), ρi = 0]
≥ E[Yi|ρi = 1]− E[Yi|ρi = 0]

E[Yi|ρi = 1]

B Estimating with a logistic regression
Instead of using the average of the outcomes by group I can use logistic regression to estimate
the risk ratio R̂RρY |X. This allows us to condition on covariates to better support the
assumption that the “always” strata of each group are comparable.
I can estimate the following model specification:

P [Yi = 1|ρi, Xi] =
exp(βρρi+X

′
iγ)

1 + exp(βρρi+X′
iγ)

(19)

From Equation 19, the main coefficient of interest is βρ which is the estimated coefficient
for the binary variable of group membership. Xi is a n × k matrix containing k observed
covariates (including a constant). Conditioning on Xi helps support the assumption that
the “always” strata of group ρ = 1 is comparable to the “always” strata of group ρ = 0. βρ

represents the average difference in outcome, all else equal, between group ρ = 1 and group
ρ = 0. Using the results from the logistic regression R̂RρY |X is estimated in the following
manner:

R̂RρY |X =
E[P (Ŷ = 1|ρ = 1, Xi = x)]

E[P (Ŷ = 1|ρ = 0, Xi = x)]
(20)

P [Yi = 1|ρi, Xi, Ui] =
exp(βρρi+X

′
iγ+τ̂Ui)

1 + exp(βρρi+X′
iγ+τ̂Ui)

(21)

I separately estimate the RRXJY |X−j
for the association of this cohort with the outcome

and RRρXj |X−j
for the relative risk of gender with this cohort. Using the process discussed in

subsubsection B.0.2 I choose the maxima of the comparisons between the levels for appointed
year by group membership. When using a Poisson regression to estimate these relative risks
I do not have to separately estimate for group ρ = 1 and rho = 0 since they are equivalent.
The largest ratio is between the 2000-2005 and 1985-1990 comparison as follows:
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Figure 6: Thresholds with estimates from
Model 1

RRXjY |ρ=1,X−j
=

max1985−1990Pr[Y = 1|ρ = 1, Xj = Appointment1985−1990,X−j]

min2000−2005Pr[Y = 1|ρ = 1, Xj = Appointment2000−2005,X−j]

RRXjY |ρ=0,X−j
=

max1985−1990Pr[Y = 1|ρ = 0, Xj = Appointment1985−1990,X−j]

min2000−2005Pr[Y = 1|ρ = 0, Xj = Appointment2000−2005,X−j]

Similarly this comparison also gives the largest ratio for

RRρXj |X−j
=

Pr[Xj = Appointment1985−1990|ρ = 1,X−j]

Pr[Xj = Appointment2000−2005|ρ = 0,X−j]

For the first conditioning set used in model 1, RRXjY |ρ,X−j
= max(RRUY |ρ=1,X, RRUY |ρ=0,X) =

max(1.09, 1.27). Therefore 1.27 is used as the comparison covariate relative risk with the
outcome to be subbed in for RRXjY |ρ,X−j

and maxRRρXj |X−j
is estimated to be 1.09. Given

the estimated main effect of 1.11, the estimated confounder relative risks do not satisfy the
low threshold requirements and an unobserved confounder the same strength as the com-
parison covariate would not be strong enough to wipe out the entire effect. Using 1.27 and
1.09 in the bias factor equation I can estimate an adjusted risk ratio and then an adjusted
quantity of interest. After controlling for the conditioning set in model 1 and adjusting
for an unobserved confounder the same strength as the comparison covariate, I find that
8.2% of men would not have been hired had they been women. Repeating this process on
conditioning set 2 I estimate a RRXjY |ρ,X−j

= 1.25 and RRρXj |X−j
= 1.06. Given the main

relative risk of 1.097 the confounder relative risks are not large enough to completely wipe
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out the effect. With conditioning set 2 the adjusted risk ratio is 1.086 telling us that 7.9%
of men would not have been hired had they been women.

Covariate Set 1 Covariate Set 2
Est. Est.

main R̂RρY |X 1.108 1.097
estimates π̂ρ,X 9.8% 8.9%

U adjusted R̂R
adj

ρY |X 1.089 1.086
estimates π̂adj

ρ,X 8.2% 7.9%

Table 4: Estimated RR and outcome test lower bound conditional on covariates. Bottom two
rows are adjusted for unobserved confounding as large as an observed comparison covariate by
first estimating the bias factor and then the relative risk and lower bound using Equation 17
and Equation 18.

B.0.1 Binary confounder

The bias factor is the amount of estimation bias due to omitting a confounder and is deter-
mined by both the association of the confounder with the outcome and the treatment with
the confounder (Ding and VanderWeele, 2016). RRUY |ρ,X is the associated relative risk of
the unobserved confounder U with the outcome Y within given levels of X, or how important
the association of the confounder is with the outcome. For a binary confounder, continuing
to marginalize across X, we have both

RRUY |ρ=1,X =
E [Pr[Y = 1|ρ = 1, U = 1,X = x]]

E [Pr[Y = 1|ρ = 1, U = 0,X = x]]

and
RRUY |ρ=0,X =

E [Pr[Y = 1|ρ = 0, U = 1,X = x]]

E [Pr[Y = 1|ρ = 0, U = 0,X = x]]
.
In order for the bias factor to bound the possible bias we choose the relative risk that
maximizes this such that RR

maxUY |ρX
= max(RRUY |ρ=1,X, RRUY |ρ=0,X). If we are using a

Poisson model to estimate these relative risks than this maximation is unneccessary as these
relative risks are equal to each other. Therefore we only need to estimate

RRUY |X =
E [Pr[Y = 1|U = 1, ρ,X = x]]

E [Pr[Y = 1|U = 0, ρ,X = x]]

For the relative risk for group membership on the unobserved confounder we have RRρU |X
as

RRρU |X =
E [Pr[U = 1|ρ = 1,X = x]]

E [Pr[U = 1|ρ = 0,X = x]]
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B.0.2 Non-binary confounder

The confounder need not be binary and if this is the case RRρU |X denotes the maximum
relative risk U = k for all k = 0, 1, . . . K−1 and U = l for all l = 0, 1, . . . , L−1 marginalized
across X. In each of the following we choose the levels of k and l to maximize the ratios
such that

RRUY |ρ=1,X =
E [maxkPr[Y = 1|ρ = 1, U = k,X = x]]

E [minlPr[Y = 1|ρ = 1, U = l,X = x]]

and
RRUY |ρ=0,X =

E [maxkPr[Y = 1|ρ = 0, U = k,X = x]]

E [minlPr[Y = 1|ρ = 0, U = l,X = x]]

Then, as in the binary case, RR
maxUY |ρX

= max(RRUY |ρ=1,X, RRUY |ρ=0,X). And with the
Poisson we need only estimate

RRUY |ρ,X =
E [maxkPr[Y = 1|ρ, U = k,X = x]]

E [minlPr[Y = 1|ρ, U = l,X = x]]

Similarly, RRρU |X is the maximum relative risk for group membership on the unobserved
confounder where k is the level at which the relative risk of treatment on the outcome is the
largest and marginalized across X.

RR
maxρU |X

=
E [Pr[U = k|ρ = 1,X = x]]

E [Pr[U = k|ρ = 0,X = x]]

Given knowledge about the magnitude of these confounder relative risks it would be straight-
forward to calculate the confounder bias BFU,X (Equation 13), the relative risk RRρY |X,U(Equation 12)
and finally πρ,X,U

πρ,X,U = 1− 1
RRρY |X
BFU,X

(22)

πρ,X,U = 1− 1

RRρY |X,U

(23)

where πρ,X,U is the proportion of members in group ρ = 0 who would not have been selected
had they been in group ρ = 1 marginalized across observed X and unobserved U . In rare
cases with domain expertise, there may be a reason why we are unable to observe U directly
to include in our main estimation but we are sufficiently knowledgable about the magnitudes
of the associated relative risks. For any pair of values for the associated relative risks we
could carryout the above process for estimating our quantity of interest.

We can also interpret these on the odds-ratio scale as the 1985-1990 cohort has an in-
creased odds of 4.3 (4.5) of having no settlement as compared to the 2000-2005 cohort.
For the first conditioning set used in model 1, RR

maxXjY |ρ,X−j

= max(RRUY |ρ,X, RRUY |ρ=0,X) =

max(1.09, 1.27). Therefore 1.27 is used as the comparison covariate relative risk with the
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outcome to be subbed in for RRXjY |ρ,X−j
and RR

maxρXj |X−j

is estimated to be 1.09. Given the

estimated main effect of 1.11, the estimated confounder relative risks do not satisfy the low
threshold requirements and an unobserved confounder the same strength as the comparison
covariate would not be strong enough to wipe out the entire effect. Using 1.27 and 1.09 in the
bias factor equation I can estimate an adjusted risk ratio and then an adjusted quantity of
interest. After controlling for the conditioning set in model 1 and adjusting for an unobserved
confounder the same strength as the comparison covariate, I find that 8.2% of men would
not have been hired had they been women. Repeating this process on conditioning set 2 I
estimate a RRXjY |ρ,X−j

= 1.25 and RRρXj |X−j
= 1.06. Given the main relative risk of 1.097

the confounder relative risks are not large enough to completely wipe out the effect. With
conditioning set 2 the adjusted risk ratio is 1.086 telling us that 7.9% of men would not have
been hired had they been women.
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